Looks like I’ll be visiting U. Michigan for a week or so at the end of October. What does one do on such a visit? I’ve been invited to give a talk, but that doesn’t occupy more than an afternoon…
I spent this morning reading through some of the literature on subspace tracking, then wound up visiting Nocedal and Wright for a refresher on the augmented Lagrangian method (Chap 17). Flipping through the book, I came across the following question:
Show that every point on the unit circle is a limit point of the sequence
→xk=(1+12k)(cosksink).
Not challenging (esp. if you don’t go into the nasty ε−δ details ), but it’s a cute problem.